8.3 Digital PAM with Noise

8.13. In this section, the transmitted signal is still in the form of digital PAM as in the previous subsection:

$$
x(t)=\sum_{n} m[n] p\left(t-n T_{s}\right)
$$

However, here, we also consider the effect of additive noise. Therefore, the received signal is

$$
y(t)=x(\overparen{t})+N(t)
$$

Figure 47: Digital PAM with Noise
8.14. Note that

- The noise $N(t)$ is random.
- The message $m[n]$ should be random (at least from the perspective of the receiver; if the receiver had known in advance the value of $m[n]$, there would have been no point of transmitting $m[n]$).
- This makes $x(t)$ and $y(t)$ random.

To emphasize the randomness in the signals under consideration, we sometimes write $M[n], X(t)$, and $Y(t)$ using capital letters ${ }^{26}$.
8.15. Simple receiver: For simplicity, let's assume that our receiver simply samples $y(t)$ every T seconds to get
$p(t)$ is a Nyquist pulse

When the alphabet \mathcal{A} contains only two symbols of opposite $\operatorname{sign}(\mathcal{A}=$ $\{-a, a\}$, where $a>0$), the decoded value $\hat{m}[n]$ of our $m[n]$ can be found by
threshold

$$
\hat{m}[n]= \begin{cases}a, & y[n] \geq 0 . \\ -a, y[n]<0 . & y[n] \\ \text { threshold level/value clover to " }-a \text { " }\end{cases}
$$

Here we use " 0 " as the threshold level/value. Turn out that this middle point is the optimal threshold to use when the two possible symbol values from the alphabet are equally likely.
Example 8.16. In Figure 47, $\mathcal{A}=\{-1,1\}$.

n	0	1	2	3	4	5	6	7	8	9
$m[n]$	1	-1	-1	1	-1	1	1	1	1	-1
$y[n]$	1.69	-0.27	-0.81	4.20	1.58	1.04	-0.34	0.35	2.19	-1.51
$\hat{m}[n]$	1	-1	-1	1	1	1	-1	1	1	-1

Note that the value of the noise $N(t)$ at $t=4 T$ is too positive. Even when " -1 " was transmitted, the received value is 1.58 which exceeds 0 . Therefore, we get an error at $n=4$.

Similarly that the value of the noise $N(t)$ at $t=6 T$ is too negative. Even when " 1 " was transmitted, the received value is -0.34 which is lower than 0 . Therefore, we get an error at $n=6$.

Among the ten symbols sent in this example, there are two symbol errors. Therefore, the symbol error rate (SER) or symbol error probability is 2/10.

Because there are two symbols in the alphabet, each symbol transmission conveys 1 bit. Hence, the bit error rate (BER) or bit error probability is also $2 / 10$.

[^0]8.17. Additive White Gaussian Noise: At each time instant t, the noise $N(t)$ is usually modeled by a Gaussian random variable with mean 0 and standard d/viation σ_{N},
$$
p^{d f} \lambda_{N(t)}(n)=\frac{1}{\sqrt{2 \pi} \sigma_{N}} e^{-\frac{1\left(\frac{n}{2}\right)^{2}}{\sigma_{N}}}
$$

Furthermore, the "white" part means that the noise values at different time instants are independent.

Definition 8.18. In general, a Gaussian (normal) random variable X with mean m and standard deviation σ is characterized by its probability density function (PDF):

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}} .
$$

To talk about such X, we usually write $X \sim \mathcal{N}\left(m, \sigma^{2}\right)$. Probability involving X can be evaluated by

$$
P[X \in A]=\int_{A} f_{X}(x) d x
$$

In particular,

$$
P[X \in[a, b]]=\int_{a}^{b} f_{X}(x) d x=F_{X}(b)-F_{X}(a)
$$

where $F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$ is called the cumulative distribution function (CDF) of X.

We usually express probability involving Gaussian random variable via the Q function which is defined by

$$
\text { qfunc } Q(z)=\int_{z}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x
$$

Note that $Q(z)$ is the same as $P[Z>z]$ where $Z \sim \mathcal{N}(0,1)$; that is $Q(z)$ is the probability of the "tail" of $\mathcal{N}(0,1)$.

It can be shown that

- Q is a decreasing function

Figure 48: Q-function

- $Q(0)=\frac{1}{2}$
- $Q(-z)=1-Q(z)$
- This is useful for converting the argument of the Q function to positive value.
- For $X \sim \mathcal{N}\left(m, \sigma^{2}\right)$,

$$
P[X>c]=Q\left(\frac{c-m}{\sigma}\right) .
$$

8.19. Three important noise probabilities for $N \sim \mathcal{N}\left(0, \sigma_{N}^{2}\right)$:

$$
\begin{aligned}
P[N>c]=Q\left(\frac{c}{\sigma_{N}}\right), P[N<c]=1-Q\left(\frac{c}{\sigma_{N}}\right), P[a<N<b] & =P[N<b]-P[N<a] \\
& =P[N>a]-P[N>b]
\end{aligned}
$$

Note that all strict inequalities above can also be replaced by the ones
at also include equalities because the noise is a continuous random variable $=Q\left(\frac{a}{\sigma_{n}}\right)-Q\left(\frac{b}{\sigma_{n}}\right)$ and hence including one particular noise value does not change probability.

(a) When a " $-a$ " was transmitted, error occurs when $N(t)>a$

$$
\text { evert } B \quad P[N(t)>a]=Q(\bar{\sigma})
$$

(b) When a "+a" was transmitted, error occurs when $N(t)<-a$

$$
\begin{aligned}
P[N(t)<-a] & =1-P[N(t) \geqslant-a] \\
& =1-Q\left(\frac{-a}{\sigma}\right)
\end{aligned}
$$

$$
a\left\{\begin{array}{c}
a \\
--0 \\
-a
\end{array}\right\}
$$

$$
=1-\left(1-Q\left(\frac{a}{\sigma}\right)\right)=Q\left(\frac{a}{\sigma}\right)
$$

A formula that connects these events with the (combined) error probebility is called the Total Probability Theorem: If a (finite or infinitely) countable collection of events $\left\{B_{1}, B_{2}, \ldots\right\}$ is a partition of Ω, then

In particular,

$$
\begin{gather*}
P(A) \tag{62}\\
\text { coding) }
\end{gather*}=\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

Here, we replace event A by the error event \mathcal{E}. Event B is defined to be the event that the transmitted symbol is " a ". The error probability is then

$$
\begin{gathered}
\varepsilon \\
P(A)
\end{gathered}=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right) .
$$

Ey ample 8.21. In a digital PAM system equally-likely symbols are selected from an alphabet set $\mathcal{A}=\{-4,4\}$. The pulse used in the transmitted signal is a Nyquist pulse. The additive noise at each// particular time instant is
Gaussian with mean 0 and standard deviation 2 .
(a) Find the probability that the received signal af a particular time is >6.
$\lceil N>2$

(b) Find the symbol error probability when 0 is used as the threshold level for the decoding decision at the receiver.

$$
\begin{aligned}
& \longrightarrow P(\varepsilon)=Q\left(\frac{a}{\sigma}\right)=Q\left(\frac{4}{2}\right)=Q(2) \approx 0.0228 \\
& \text { SNR }=\text { signal-to-noise (power) ratio }=\frac{a^{2}}{\sqrt{E}\left[N^{2}(t)\right]}=\frac{a^{2}}{\sigma^{2}} \\
& P(\varepsilon)=Q(\sqrt{S N R})
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var} x & =\mathbb{E}\left[x^{2}\right]-(\mathbb{E} x)^{2} \\
\mathbb{E}\left[x^{2}\right] & =\operatorname{Var} x+(\mathbb{E} x)^{2}=\sigma_{x}^{2}+(\mathbb{E} x)^{2}
\end{aligned}
$$

[^0]: ${ }^{26}$ Caution: Here, capital letters represent random variables/processes. In earlier sections, we used capital letter to represent Fourier transform. However, we won't talk about Fourier transform here; so confusion can be avoided.

